📚 node [[tensor product]]
Tensor Product
- [[cartesian-product]]
- [[kronecker-product]]
-
on two [[quantum-state]]s:
- take the cartesian product of the set of component states, this is the new set of states
- the scalar attached to each new state is the product of the two component scalars
- $
\left(\alpha\ket{0}+\beta\ket{1}\right)\otimes\left(\gamma\ket{0}+\delta\ket{1}\right) = \alpha\gamma\ket{00} + \alpha\delta\ket{01} + \beta\gamma\ket{10} + \beta\delta\ket{11}
$
-
on two [[unitary-operator]]s:
- $
\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{bmatrix}
$
- $
- $
\left(\mathbf{A} \otimes \mathbf{B}\right)\left(\mathbf{C} \otimes \mathbf{D}\right) = \mathbf{A}\mathbf{C} \otimes \mathbf{B}\mathbf{D}
$
📖 stoas
- public document at doc.anagora.org/tensor-product
- video call at meet.jit.si/tensor-product
⥱ context
← back
(none)
(none)
↑ pushing here
(none)
(none)
↓ pulling this
(none)
(none)
🔎 full text search for 'tensor product'