📚 node [[inner product]]

Inner Product

  • operates on two vectors and produces a scalar
  • notation $\braket{x|y}$
    • $\bra{x}$ is a [[bra]]
    • $\ket{y}$ is a [[ket]]
  • follows laws
    1. $\braket{0|y} = 0$ and $\braket{x|0} = 0$
    2. $\braket{x + y|z} = \braket{x|z} + \braket{y|z}$ and $\braket{x|y + z} = \braket{x|y} + \braket{x|z}$
    3. $\braket{cx|y} = \overline{c}\braket{x|y}$ and $\braket{x|cy} = \braket{x|y}c$
    4. $\braket{x|y} = \overline{\braket{y|x}}$
  • the inner product $\braket{x|y}$ is antilinear in $x$ and linear in $y$
    • if starting with two [[ket]]s, take the conjugate transpose of the former: $\bra{x} = \ket{x}^\dagger = \overline{\ket{x}}^\intercal = \overline{\ket{x}^\intercal}$
📖 stoas
⥱ context