📚 node [[inner product]]
Inner Product
- operates on two vectors and produces a scalar
-
notation $
\braket{x|y}
$ -
follows laws
- $
\braket{0|y} = 0
$ and $\braket{x|0} = 0
$ - $
\braket{x + y|z} = \braket{x|z} + \braket{y|z}
$ and $\braket{x|y + z} = \braket{x|y} + \braket{x|z}
$ - $
\braket{cx|y} = \overline{c}\braket{x|y}
$ and $\braket{x|cy} = \braket{x|y}c
$ - $
\braket{x|y} = \overline{\braket{y|x}}
$
- $
-
the inner product $
\braket{x|y}
$ is antilinear in $x
$ and linear in $y
$- if starting with two [[ket]]s, take the conjugate transpose of the former: $
\bra{x} = \ket{x}^\dagger = \overline{\ket{x}}^\intercal = \overline{\ket{x}^\intercal}
$
- if starting with two [[ket]]s, take the conjugate transpose of the former: $
📖 stoas
- public document at doc.anagora.org/inner-product
- video call at meet.jit.si/inner-product
🔎 full text search for 'inner product'