📚 node [[image processing with opencv (code)]]
📓
garden/KGBicheno/Artificial Intelligence/Computer Vision/Week3/Image processing with OpenCV (Code).md by @KGBicheno
Image processing with OpenCV (Code)
Go back to the [[Computer Vision Week 3 Main File]]
Download an image to disk
# 1.1. Download an image of your choosing and display it
import urllib.request
kgb_and_mum_url = "https://i.imgur.com/zf1VBBC.jpg"
kgb_and_mum_filename = "kgb_and_mum.jpg"
urllib.request.urlretrieve(kgb_and_mum_url, kgb_and_mum_filename)
Display an image in a Jupyter Lab
from matplotlib import pyplot as plt
%matplotlib inline
kgb_and_mum = cv2.imread(kgb_and_mum_filename)
plt.imshow(kgb_and_mum)
Correct a BGR image to RGB
img_corrected = cv2.cvtColor(kgb_and_mum, cv2.COLOR_BGR2RGB)
plt.imshow(img_corrected)
Convert the image to greyscale and display it
# 1.2. Convert the image to grayscale and display it
kgb_and_mum = cv2.imread(kgb_and_mum_filename)
gray_kgb_and_mum = cv2.cvtColor(kgb_and_mum, cv2.COLOR_BGR2GRAY)
plt.imshow(gray_kgb_and_mum, cmap = 'gray')
plt.axis("off") #remove axes ticks
plt.title('Grayscale Image')
Display the Canny Edge map of the image
rcParams['figure.figsize'] = 10, 12
# play around with the threshold values to get the most accurate edges
edges = cv2.Canny(img_corrected,
threshold1=100,
threshold2=200)
plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
Display a histogram of the greyscale colours
# 2.1. Using your grayscale image from Exercise 1, display its grayscale histogram
rcParams['figure.figsize'] = 8,4
plt.hist(gray_kgb_and_mum.ravel(),256,[0,256])
plt.title('Histogram of Grayscale kgb_and_mum.jpg')
plt.show()
It should look something like this:
Display a histogram of RGB colours
# 2.2. Using your color image from Exercise 1, display its color histogram
rcParams['figure.figsize'] = 8, 4
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv2.calcHist([kgb_and_mum],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
plt.show()
It should look something like this:
📖 stoas
- public document at doc.anagora.org/image-processing-with-opencv-(code)
- video call at meet.jit.si/image-processing-with-opencv-(code)
⥱ context
← back
(none)
(none)
↑ pushing here
(none)
(none)
↓ pulling this
(none)
(none)
🔎 full text search for 'image processing with opencv (code)'