📕 subnode [[@ryan/20210117143856 function]]
in 📚 node [[20210117143856function]]

tags :: category theory

source :: ACT4E  Session 2  Connection
A function is a special type of relation
A relation is a function if it satisfies the two following conditions:

$\forall x \in X \exists y \in Y : \langle x,y \rangle \in R$

every element of the source X gets mapped by f to some element of the target Y


$\exists \langle x_1,y_1 \rangle, \langle x_2,y_2 \rangle \in R$ holds: $x_1
x_2 \Rightarrow y_1
y_2$
Like categories and subsequently relations, functions can also be composed.
📖 stoas
 public document at doc.anagora.org/20210117143856function
 video call at meet.jit.si/20210117143856function