confusion matrix
Go back to the [[AI Glossary]]
An NxN table that summarizes how successful a classification model's predictions were; that is, the correlation between the label and the model's classification. One axis of a confusion matrix is the label that the model predicted, and the other axis is the actual label. N represents the number of classes. In a binary classification problem, N=2. For example, here is a sample confusion matrix for a binary classification problem:
Tumor (predicted) | Non-Tumor (predicted) | |
---|---|---|
Tumor (actual) | 18 | 1 |
Non-Tumor (actual) | 6 | 452 |
The preceding confusion matrix shows that of the 19 samples that actually had tumors, the model correctly classified 18 as having tumors (18 true positives), and incorrectly classified 1 as not having a tumor (1 false negative). Similarly, of 458 samples that actually did not have tumors, 452 were correctly classified (452 true negatives) and 6 were incorrectly classified (6 false positives).
The confusion matrix for a multi-class classification problem can help you determine mistake patterns. For example, a confusion matrix could reveal that a model trained to recognize handwritten digits tends to mistakenly predict 9 instead of 4, or 1 instead of 7.
Confusion matrices contain sufficient information to calculate a variety of performance metrics, including precision and recall.
- public document at doc.anagora.org/confusion_matrix
- video call at meet.jit.si/confusion_matrix