# Outer Product - operates on two vectors and produces a matrix - notation is $`\ket{x}\bra{y}`$ - $`\ket{x}`$ is a [[ket]] - $`\bra{y}`$ is a [[bra]] - [[matrix-multiplication]], associates with [[inner-product]] - a sum $`\ket{x}\bra{0} + \ket{y}\bra{1}`$ where $`\ket{x}`$ and $`\ket{y}`$ are [[orthonormal]] produces a [[unitary-operator]] sending $`\ket{0}`$ to $`\ket{x}`$ and $`\ket{1}`$ to $`\ket{y}`$